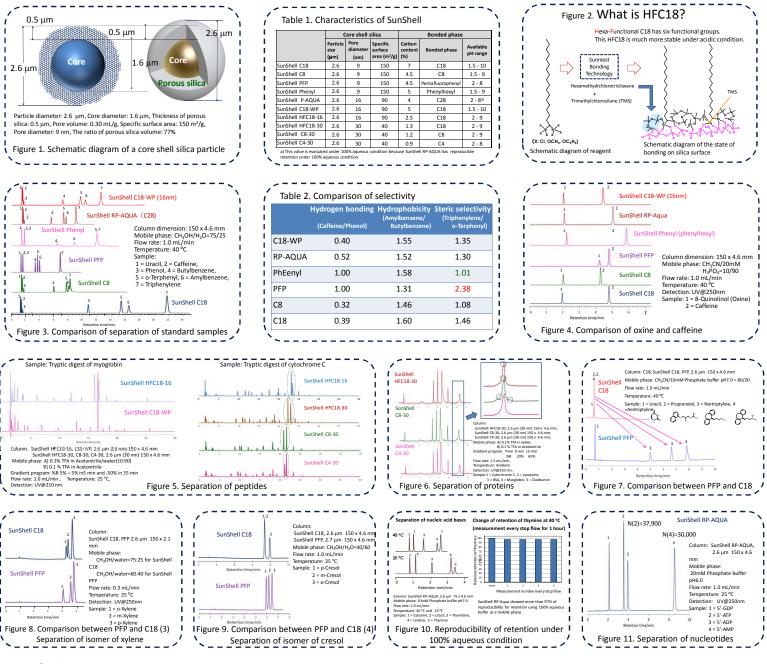
Selectivity of stationary phases with alkyl, phenyl and pentafluorophenyl groups on core shell particle

www.chromanik.co.ip


Norikazu Nagae¹⁾, Tomoyasu Tsukamoto¹⁾, Scott Silver²⁾ 1) ChromaNik Technologies Inc., 6-3-1 Namiyoke, Minato-ku, Osaka, Japan 2) Innovations United, 300 East 57th Street, Suite 11J, New York, NY 10022 USA

Abstract

Brand columns packed with superficially porous particles have been available for some time. The superficially porous media or so called core-shell media offers significant improvements such as higher efficiency and lower pressure drop for existing HPLC operations without having to replace existing HPLC systems with UHPLC systems.

In this study, a 2.6 µm core-shell silica with a non-porous core approximately 1.6 µm in diameter and a superficially porous layer of 0.5 µm was used as a based material. Core-shell silicas bonded with C18, C28, phenylethyl and pentafluorophenyl (PFP) groups were evaluated for hydrogen bonding capacity, hydrophobicity, steric selectivity and both peak shape and retention of oxine as a metal chelating compound.

A core-shell C28 with long chain ligands was suitable for separation of both high polar compounds using 100% aqueous mobile phase and a fat-soluble compound to compare with a conventional C18, while a core shell PFP could separate 3 kinds of isomers of cresol completely although a C18 could not separate meta-cresol and para-cresol. Different selectivity by different stationary phases was confirmed on core shell silica particles as well as fully porous silica particles.

Conclusion

*Hydrogen bonding, hydrophobicity and steric selectivity of alkyl groups, phenyl group and pentafluorophenyl group were evaluated.

*Pentafluorophenyl showed highest hydrogen bonding and highest steric selectivity and much different from C18 group. Pentaflorophenyl group showed much longer retention time for a polar compounds and could separate isomers better than C18 group.

*C28 group showed reproducible retention under 100% aqueous condition.