

1

第2回バイオ医薬展2018

基礎から解説コアシェルカラム 多孔質の厚さで変わるタンパク分析

(クロマニックテクノロジーズ) 長江 徳和, 塚本 友康, 佐藤 誠

コアシェルシリカの歴史

3

コアシェルカラム

	Manufacturer	Brand	Particle size (µm)	Porous layer thickness (µm)	Pore diameter (nm)	Surface area (m²/g)	Bonded phase
1	Advanced Chromatography Technologies	UltraCore	2.5, 5		9.5	130	C18, Phenyl-hexyl
2	Advanced Mterials Technologies	HALO	2.0, 2.7, 3.4,4.6	0.2, 0.4, 0.5, 0.6	9, 16, <mark>40, 100</mark>	120, 135, 15, 90	C18, C8, Phenyl-Hexyl, PFP, Cyano, RP-Amide, HILIC, Pentahydroxy-HILIC, C4, Glycan
3	AkzuNobel	Kromasil ClassicShell/ EternityShell	2.5	0.5		110	C18, C8
4	Agilent Technologies	PoroShell	1.9, 2.7, 4, 5	0.25, 0.5	12, <mark>30</mark>	130	C18, C8, Phenyl-Hexyl, PFP, SB-Aq, Cysno, HILIC
5	Chrom4	Isosceles	2.6, 4.6	0.5, 0.6	9.5, 16	140, 90	C18, AQ, C8, C3, Phenyl-hexyl, PFP, Amide(HILIC)
6	ChromaNik Technologies	SunShell	2.0, 2.6, 3.4, 4.6	0.2, 0.4, 0.5, 0.6	9, 12, 16, <mark>30,</mark> 100	150, 90, 40,15, 22	, C18, RP-AQUA, C8, PFP, Pnenyl-Hexyl, 2-Etheylpyridine, HILIC- Amide, C30, Hexafunctional C18, C4
7	Dr Maisch	PeproShell	2.6				C18
8	Fortis Technologies	SpeedCore	2.6, 3.5, 5	0.4	8, 16, <mark>30</mark>	140	C18, C18-Amide, C18-PFP, Diphenyl, PFP, HILIC C8, C4
9	GL Sciences	InertCore	2.4	0.3	9	100	C18
10	Knauer	BlueShell	2.6, 4.5	0.5	8	130	C18, C8
11	Merck (supelco)	Ascentis Express/ BioShell	2.0, 2.7, 3.4, 5	0.2, 0.4, 0.5, 0.6	9, 16, <mark>40,</mark>	120, 135, 80, 15, 90	C18, C8, C4, RP-Amide Phenyl-Hexyl, Biphenyl, Cyano, PFP, Pentahydroxy-HILIC
12	Macherey-Nagel	NucleoShell	2.7	0.5	9	130	C18,Phenyl-Hexyl, PFP, HILIC
13	Nacalai Tesque	CosmoCore	2.6	0.5	9	150	C18, Cholestrol, Pentabromobenzyl
14	Perkin Elmer	Brownlee SPP	2.7	0.5	9, 16		C18, C8, Phnyl-Hexyl, PFP, RP-Amide, HILIC
15	Phenomenex	Kinetex/ Aeris	1.3, 1.7, 2.6, 3.6, 5	0.2, 0.23, 0.35, 0.67	10, <mark>20</mark>	200	C18, C8, Phenyl-hexyl, PFP, Biphenyl, HILIC, C4
16	Restek	Raptor	2.7		9	150	C18, Biphenyl, PFP, HILIC
17	Sepax Technologies	Opalshell	2.6	0.5	9	150	C18
18	Osaka Soda	Capcell Core	2.7	0.5	9, 16, <mark>30</mark>	150	C18, AQ, Adamantyl , Phosphocholine, PFP
19	SCAS	Sumipax ODS Z-Shel Sumichiral OA-Shell P1	2.6	0.5	9, <mark>30</mark>	150, 40	C18, Poly(diphenylacetylene) derivative
20	SIELC Technologies	Coresep	2.7		9		Mixed mode: RP + cation exchange, aRP + anion exchnge, HILIC + ion exchange
21	Thermo Scientific	Accucore	2.6, 4		8, 15	130	C18, C8, AQ, henyl-Hexyl, Phenyl, C30, PFP
22	Waters	Cortecs	1.6, 2.7	0.26	9	100	C18, C8, Phenyl-Hexyl, HILIC
23	Welch	Boltimate	2.7	0.5	9	120	C18, Phenyl-Hexyl, PFP, HILIC
24	YMC	Meteoric Core	2.7	0.5	8, 16	150, 90	C18, C8

コアシェル粒子(クロマニックテクノロジーズ)

コアシェルシリカの電子顕微鏡写真

粒子径: 2.6 μm 細孔径: 16 nm

粒子径: 3.4 μm 細孔径: 30 nm

コアシェルシリカ粒子を樹脂包埋し、Arイオンミリングにより断面加工し、導通処理のためOs(オスミウム)蒸着して観察しました。コア(フューズドシリカ)とその周りの多孔質層が確認できます。 5

コアシェル構造なぜ高理論段数か?

コアシェルと全多孔性充填剤の比較

全多孔性とコアシェルの理論段高さの比較

Sub2 µmカラムとコアシェル型カラムとの圧力比較

9

コアシェルC18の標準試料の分離例

単位圧力あたりの段数比較

	Plates	Pressure(MPa)	Plates/pressure
Sunniest C18-HT 2.0 μm	9,900	16.7	593
Brand A C18 1.9 μm	7,660	16.3	470
Brand B C18 1.8 μm	10,100	19.6	515
Brand C C18 1.7 μm	11,140	32.0	348
SunShell C18 2.6 μm	9,600	9.7	990

Column: 50 x 2.1 mm C18, Mobile phase: Acetonitrile/water=(70/30), Temperature: 25 °C

通常仕様とセミミクロ仕様のHPLCの比較

イソクラティック溶離例 5µm C18からの移行

Column: Brand F C18, 5 μ m 250 x 4.6 mm SunShell C18, 2.6 μ m 100 x 4.6 mm Mobile phase: CH₃CN/20mM Phosphoric acid = 45/55 Flow rate: 1.0 mL/min, 1.8 mL/min at the lowest chromatogram Temperature: 25 °C Pressure: 9.5 MPa for Brand F C18 5 μ m 13.4 MPa for SunShell C18 2.6 μ m Detection: UV@230 nm Sample: 1 = Benzydamine 2 = Ketoprofen 3 = Naproxen 4 = Indomethacin

5 = Ibuprofen

HPLC: Hitachi LaChrom ELITE (内径0.25mmの配管仕様)

UHPLC: Jasco X-LC

なぜコアシェルカラムが選ばれるか?

- 1. 高理論段数, ハイスループット(高速分析)の全多孔性サブ2μm カラムの需要が, この10年あまり大幅に伸びてきている。
- コアシェル粒子は全多孔性粒子に比べ理論段数(性能)が50% アップする。
- 3. 言い換えれば, 全多孔性の1.8µmの充填剤と同じ理論段数がコ アシェルでは2.6µmの充填剤で達成される。
- 4. カラム圧を比較すると、粒子径の2乗には比例するため、コア シェルでは2.6μmの充填剤は全多孔性の1.8μmの充填剤の半 分のカラム圧である。
- 5. UHPLCは高耐圧仕様であるが、低い圧での操作は装置のメンテ ナンスを大幅に軽減できる。
- サブ2μmカラムのユーザーもUHPLC装置に優しい(故障回数を 低減できる) 2.6μmのコアシェルカラムに移行する例が多くなっ てきた。

高分子分離用コアシェルカラム (タンパク質用)

	P/N	Particle size	Core diameter	Thickness of porous layer	Pore diameter	Surface area	Carbon loading	Surface coverage	End- capping
SunShell C4-100 2.1 x 100 mm	C66961	2.6 µm	1.6 µm	0.5 μm	100 nm	22 m²/g	0.6%	3 µmol/m²	Yes
SunShell C4-30 2.1 x 100 mm	C26961	2.6 µm	1.6 µm	0.5 μm	30 nm	40 m²/g	0.9%	3 µmol/m²	Yes
SunShell C8-100 2.1 x 100 mm	C76961	2.6 µm	1.6 µm	0.5 μm	100 nm	22 m²/g	0.9%	2.5 μmol/m²	Yes
SunShell C8-30 2.1 x 100 mm	C36961	2.6 µm	1.6 µm	0.5 μm	30 nm	40 m²/g	1.2%	2.5 μmol/m²	Yes
SunShell C8-30HT 2.1 x 100 mm	C56961	3.4 µm	3.0 µm	0.2 μm	30 nm	15 m²/g	0.5%	2.5 μmol/m²	Yes

コアシェル粒子の細孔分布

16

標準タンパク質の分離(5min)

Column:

SunShell C4-100, 2.6 μ m (100 nm) 100 x 2.1 mm, SunShell C4-30, 2.6 μ m (30 nm) 100 x 2.1 mm, SunShell C8-100, 2.6 μ m (100 nm) 100 x 2.1 mm, SunShell C8-30, 2.6 μ m (30 nm) 100 x 2.1 mm, SunShell C8-30HT, 3.4 μ m (30 nm) 100 x 2.1 mm, Mobile phase: A) 0.1% TFA in water

- B) 0.1 % TFA in Acetonitrile Gradient program: Time 0 min 5 min %B 20% 65% Flow rate: 0.5 mL/min , Temperature: 80 °C Detection: UV@215 nm,
- Injection volume: 0.5 μL
- Sample:1 = Cytochrome C, 2 = Lysozyme, 3 = BSA,
- 4 = Myoglobin, 5 = Ovalbumin
- UHPLC instrument: HITACIHI Chromaster

タンパク質分離には多孔質層 が薄い方が有利だと言われる が,細孔径1000Å(100nm)の 場合には多孔質層は0.5 μm でも問題ない。

ピーク幅(W0.5, min)

	C4-100	C4-30	C8-100	C8-30	C8-30HT	試料濃度
多孔質層	0.5 μm	0.5 μm	0.5 μm	0.5 μm	0.2 μm	
Cytochrome C	0.047	0.057	0.047	0.057	0.046	0.025%
Lysozyme	0.045	0.056	0.046	0.056	0.046	0.025%
BSA	0.079	0.122	0.077	0.100	0.075	0.050%
Myoglobin	0.048	0.066	0.047	0.063	0.045	0.025%
Ovalbumin	0.109	0.133	0.109	0.119	0.109	0.025%

標準タンパク質の分離(60min)

Column:

SunShell C4-100, 2.6 µm (100 nm) 100 x 2.1 mm, SunShell C4-30, 2.6 µm (30 nm) 100 x 2.1 mm, SunShell C8-100, 2.6 µm (100 nm) 100 x 2.1 mm, SunShell C8-30, 2.6 µm (30 nm) 100 x 2.1 mm, SunShell C8-30HT, 3.4 µm (30 nm) 100 x 2.1 mm, Mobile phase: A) 0.1% TFA in water B) 0.1 % TFA in Acetonitrile Gradient program: Time 0 min 60, min %B 20% 65% Flow rate: 0.5 mL/min, Temperature: 80 °C Detection: UV@215 nm, Injection volume: 1.0 µL Sample:1 = Cytochrome C, 2 = Lysozyme, 3 = BSA, 4 = Myoglobin, 5 = Ovalbumin UHPLC instrument: HITACIHI Chromaster

多孔質層が薄い場合には 試料負荷量が小さくなり, 注入量を考慮しなければ ならない。

ヒーク幅(W0.5, min

	C4-100	C4-30	C8-100	C8-30	C8-30HT	C8-30HT 0.5uL	試料濃度
多孔質層	0.5 μm	0.5 μm	0.5 μm	0.5 μm	0.2 μm	0.2 μm	
Cytochrome C	0.167	0.177	0.160	0.155	0.212	0.144	0.050%
Lysozyme	0.164	0.180	0.153	0.166	0.196	0.145	0.050%
BSA	0.308	0.410	0.276	0.514	0.422	0.330	0.100%
Myoglobin	0.197	0.221	0.180	0.199	0.238	0.176	0.050%
Ovalbumin	0.391	0.889	0.247	0.428	0.184	0.176	0.050%

タンパク質の精密分離

Column: SunShell C8-30, 2.6 μ m (30 nm, 0.5 μ m layer) 100 or 150 x 2.1 mm, Mobile phase: A) 0.1% TFA in water B) 0.08 % TFA in Acetonitrile Gradient program: Time 0 min 5 or 60 min %B 20% 65% Flow rate: 0.5 mL/min , Temperature: 80 °C , Detection: UV@215 nm Sample:1 = Cytochrome C, 2 = Lysozyme, 3 = BSA, 4 = Myoglobin, 5 = Ovalbumin

界面活性剤の分離 Triton X-100

細胞培養によって得られた精製抗体(IgG)の分離

精製抗体(IgG)のサイズ排除分離

Column: SunSec Diol30, 4 µm 300 x 4.6 mm i.d. Mobile phase: 0.1M Phosphate buffer + 0.2 M NaCl (pH6.8) Flow rate: 0.35 mL/min Temperature: 25 °C Detection UV at 220 nm Injection 2 µL Sample: 細胞培養によって得られた精製抗体 (IgG, プロテインGアフィニテイーカラムで精製)

2-プロパノールを移動相に添加したIgGの分離

ナノカラムによる細胞培養によって得られた 精製抗体(IgG)の分離

Improved MAb Separations with 1000 Å Superficially Porous Particles

Stephanie A. Schuster^{*}, Brian M. Wagner, Joseph J. DeStefano, Taylor J. Shields, William L. Miles, and Barry E. Boyes Advanced Materials Technology, Inc, 3521 Silverside Rd., Ste. 1-K, Quillen Bldg, Wilmington, DE 19810 *Corresponding Author: Stephanie A. Schuster, Advanced Materials Technology, Inc, 3521 Silverside Rd., Ste. 1-K, Quillen Bldg, Wilmington, DE, 19810 USA, 1-302-477-1526 (phone); 1-302-477-2514 (fax); sschuster@advanced-materials-tech.com

Figure 1. Crystal structure of human IgG[1] with the x and y lengths.

CHROMATOGRAPHY February / March 2017

細孔径100nmの コアシェルシリカ

B

Α

Figure 2A. SEM image of a 2.7 μm superficially porous 1000Å particle. 2B. FIB image of a 1000Å SPP showing the 1.7 μm core with 0.5 μm shell.

★直径0.1µmのシリカー次粒子から多孔質層が形成されている。 ★粒子径0.1µmのノンポーラス充填剤と同等な分離ができ、カラム圧は2.7µm粒子相当 になる。

★したがって、粒子径0.1µmのカラムに比べ、2.7µmのカラムは1/700の背圧になる。

細孔分布

CHROMATOGRAPHY February / March 2017 0.6 1.2 dV/dlog(w) Pore Volume, $(cm^3/g\cdot Å)$ dV/dlog(w) Pore Volume, (cm³/g·Å) .0 70 80 10 0.5 → 1.7 µm, 300 Å, FPP -O-2.7 µm, 1000 Å, SPP 0.4 0.3 0.2 ົ 0.1 0.0 0.0 1000 10 100 Pore Width, (Å)

Figure 4. Pore size distributions of 1.7 μ m 300Å FPPs and 2.7 μ m 1000Å SPPs.

29

Figure 6. Intact trastuzumab separation using 1000Å SPPs and 300Å FPPs. Conditions: Columns: 2.1 x 150 mm; Mobile phase A: water/0.1% TFA; Mobile phase B: ACN/0.1% TFA; Gradient: 32-38% B in 12 min; Flow rate: 0.4 mL/min; Temperature: 80°C: Sample: trastuzumab; Injection volume: 2 µL of 0.5 mg/mL; Instrument: Shimadzu Nexera; Detection: 280 nm with 350 nm reference wavelength

トラスツズマブ(分子標的薬) 商品名(製造・販売会社):ハーセプチン(中外製薬)

Trastuzumabの相互作用する表面

FPP: 70 m²/g, 21 m² (0.3g) in a 150 x 2.1 mm column

SPP: 22 m²/g, 13 m² (0.6g) in a 150 x 2.1 mm column, SPPはFPP比べ充填剤の比重が約2倍

まとめ

- ✓コアシェル構造により全多孔性に比べ段数が50% アップする。
- ✓コアシェル粒子は表面に多孔質層が存在し、この 層が0.5 µm以下であり、拡散の遅い高分子の移動 距離が全多孔性粒子よりも短く、短時間で平衡化 される。
- ✓モノクロナール抗体のような分子量が15万を超え

る試料は、100nmの細孔径が有利に働く。

ご静聴ありがとうございました

