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Figure 2. A scaled representalion of octadecyl chains chemi-
cally bonded to the surface of silica gel showing solvophobic
aggregation of the bonded ligands. Appropriate coverage
data for this phase was taken from Table Il. The white circle
on thé cluster represents a benzene sized solute molecule.
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solutes become larger, the curves become more nearly linear,
and this is consistent with the interpretation that for larger
solutes even the longer bonded phases are incapable of
completely utilizing the large solute surface area. Apparently,
even larger or ‘‘deeper’’ aggregations of bonded alkyl chains
would be needed to approach a liquid-like interaction.

The possibility that these effects result from an exclusion
phenomena due to restricted entrance of some solutes into
pores in the silica matrix seems unlikely. In Figure 5 linear
changes of k' with carbon percentages with the large solutes
(anthracene and chrysene) and flattened curves for the smaller
solutes can be seen. The opposite trend would be expected if
the larger solutes were secing progressively less stationary
phase as they were being restricted from entering the pores
because of increasing blockage by the longer chain alkyl silane
reagents. On the other hand, if it is maintained that benzene
and naphthalene are suffering exclusion from the pores with
increased carbon coverage and anthracene and chrysene never
enter the smaller pores at all, then at the lesser carbon
coverages benzene and naphlhaléne should be encountering
proportionally more of the bonded stationary phase than the
larger solutes, It is found, however, that the difference in In k'
values between solutes in the linear portion of the k' vs %
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SUMMARY

The retention characteristics of a number of *brush”- and “bulk™-type reversed-
phase column packing materials that are commercially available for high-perform-
ance liquid chromatography are examined in the situation where an abrupt change in
mobile phase from pure methanol to pure water occurs. It is shown that the brush-
type reversed phases are slow to come into equilibrium with pure water, and in con-
tact with water it would appear that the hydrocarbon chains dispersively interact
with themselves. This dispersive intramolecular interaction of the hydrocarbon chains
results in a reduction in effective chromatographic surface area and consequently
anomalously low retentive characteristics. In contact with solvent containing 10%
(w/v) or more of organic solvent such as methanol, the brush-type materials exhibit
normal retention characteristics. The bulk or polymeric bonded phases, however,
equilibrate rapidly with water, and due to their more rigid structure do not appear
to exhibit dispersive intramolecular interactions and thus exhibit normal retention
characteristics. The bulk or polymeric type reversed phases, therefore, are to be
preferred for examining solute-solvent/stationary phase interactions due to their
more consistent chromatographic properties.




has a lower retention volume for alcohol than RP-2 and only slightly greater than
RP-8. A possible explanation for this anomalous effect has been put forward by
Lochmuller and Wilder® and by Gilpin and Squires®, who suggest that under certain
conditions the hydrocarbon chains of a brush-type reversed phase can interact more
strongly with themselves than with the surrounding mobile-phase. Hydrocarbon
chains can only exhibit dispersive interactions, and thus they will compete for either
water or an adjacent hydrocarbon chain to interact with. Obviously, if only dis-
persive interactions are considered, hydrocarbon-hydrocarbon interactions will be
much stronger than hydrocarbon-water interactions. It follows that the stationary
phase could agglomerate and, therefore, could have a greaily reduced efiective

chromatographic surface area. It is possible that it will adopt a spatial arrangement

where the chains are lying almost flat upon the surface. This would, in effect, reduce
the effective chromatographic surface area very significantly and could account for
the extensive reduction in retention capacity of the aggregated bonded phase. This
would explain why the RP-2 bonded phase retains the solute to a greater extent than
RP-18 in pure water and also explains why at higher alcohol concentrations where
the hydrocarbon chains could move more freely in the mobile phase the retention
characteristics are reversed and exhibit normal elution behavior. Originally in contact
with wet methanol, the hydrocarbon chains would be free to move in the solvent, and
the methanol between the chains would permit them to remain apart as the dispersive
interactions between the hydrocarbon chains and the methanol are more nearly
equivalent to the interactions between the chains themselves. However, when in
contact with water, the methanol would slowly diffuse from between the hydro-
carbon chain matrix, permitting the chains to interact with each other and collapse
onto the surface with the resulting reduction in effective chromatographic surface
area. Thus, the retention volume which is a product of the distribution coefficient and
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Column: ODS(10) 5 um 150 x 4.6mm, Mobile phase: Water,
Flow rate: 1.0mL/min, Temperature:40
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ChromaNik ¢ 0 i
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Orientational Dynamics of a Hydrophobic Guest in a
Chromatographic Stationary Phase: Effect of Wetting by

Alcohol

Malcolm E. Monigomery, Jr., M. Anthony Green, and Mary J. Wirth*

Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716

The orlentational distribution of the alkyl chains of a C
chromatographic surface was sensed Indirectly from the
orlentational distribution of a long hydrophobic probe, 1,4-
bis( 0 -methylstyryl)benzene. Frequency-domain fluorescence
anisotropy measurements were used to determine the orien-
tation and reorientation of the fluorescent probe. When pure
water Is In contact with the C,; surface, the orientational
distribution of the probe Is centered close to the plane of the
surface. The effects of two different wetting solvents were
explored: 20% methanol and 5% 1-propanol. When the C,,
surface Is In contact with elther of these, there Is little change
In the orlentational distribution of the probe.

Wetting is important to the dynamics of chroma
For example, Cole and Dorsey showed that the a
only a few percent of 1-propanol to an aqueous mo
increases chromatographic efficiency almost 2-fo
improved mass transfer was interpreted as owing to
wetting of the chromatographic surface by the mol
due to significant adsorption of 1-propanol onto t
phobic surface. As supporting evidence cited, !
Simpson had measured the adsorption isotherms fo
of alcohols in water with a polymeric C,; surface,
results showed that short-chain alcohols achieve s
coverage on the chromatographic surface even at con
levels of only 5% of 1-propanol in water.'* Highe
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silanizing agents were purchased from Aldrich. The coverage of
the plates was determined by FTIR spectrometry to be 60 £+ 10
A2/C,4 chain (2.8 £ 0.5 umol/m?). The amount of end-capping
was not quantitated.
ChromaNik WG %

RESULTS AND DISCUSSION

A. Contact Angle Information. The contact angle of
pure water on the C;g surface was measured to be 93°, which
indicates that water does not wet the surface. For 20%
methanol in water and 5% 1-propanol, the contact angles were
measured to be 65 and 69°, respectively, which indicates that
the surface is partially wetted by these mobile phases. Contact
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