Usability of a core shell column using high performance liquid chromatograph for a routine analysis

Tomoyasu Tsukamoto¹⁾, Norikazu Nagae¹⁾, Scott Silver²⁾

- 1) ChromaNik Technologies Inc., 6-3-1 Namiyoke, Minato-ku, Osaka, Japan
- 2) Innovations United, 300 East 57th Street, Suite 11J New York, NY 10022 USA

Abstract

Superficially porous particle (core shell particle) has been available as an alternative to using sub-2 μm particle for HPLC or UHPLC. Core shell particles are composed of a 1.2 to 1.9 μm solid core encircled a 0.25 μm to 0.5 μm porous layer. Especially a 2.6 μm core shell particle shows a half back pressure and the almost same efficiency to compare with sub-2 μm particle because of a large particle and reducing mass transfer due to a thin porous silica layer. In this study, a 2.6 μm core shell silica with a non-porous core approximately 1.6 μm in diameter and a superficially porous layer of 0.5 μm was used as a based material. A core shell silica bonded with C18 and end-capped was evaluated for a routine analysis, which is done using conventional 5 µm particle column sized 150 or 250 x 4.6 mm i.d. A core shell C18 column sized 100 x 4.6 mm and a conventional C18 column sized 250 x 4.6 mm were compared for an analysis of analgesics using Hitachi LaChrom ELITE HPLC under a isocratic mode. Both columns showed the same efficiency and an analysis time by a core shell C18 columns decreased to one third to compare with a conventional C18 column without changing of conditions except for a column, a same instrument, a same flow rate, a same mobile phase. In case of gradient separation of catechins, the almost same result was obtained as well as under a isocratic mode

Core shell vs Sub-2 µm fully porous

Figure. 1 Comparison of plate height

Figure, 2 Reason for decreasing B term

Comparing between SunShell and sub-2

SunShell (core shell column) was

- Similar theoretical plate
- lower plate height under low flow rate conditions (because core interferes with diffusion in the column direction)

Appling for HPLC

Figure. 7 Examples of transfer (isocratic separation)

Figure. 8 Examples of transfer (gradient separation)

About SunShell

Brand K

Figure 5. Stability under basic pH condition

Figure 6. Loading capacity of amitriptyline

Comparing between SunShell and

Appling for HPLC 2

Figure. 9 Comparing between UHPLC and HPLC pump with Detector for UHPLC

Regarding a core shell column, there was no difference between a system combining HPLC pump and UHPC detector and UHPLC system.

It is unnecessary for a core shell column to use UHPLC pump.

A point of note is that a core shell column should be used under smaller void volume conditions to get higher theoretical plate on HPLC.

Conclusions

The 100 imes 4.6 sized SunShell column could achieve the same separation to compare with the 250 \times 4.6 sized 5 μm fully porous column under isocratic

An analysis time by a core shell C18 column decreased to one third or half comparing with a conventional C18 columns without changing of analytical

In gradient separation of catechins, the good result was obtained as well as under isocratic mode.

In case of a core shell column, HPLC with a detector for UHPLC is enough for 100% performance.